题目内容

【题目】如下图,已知⊙O的直径为ABACAB于点A, BC与⊙O相交于点D,在AC上取一点E使得ED=EA下面四个结论:①ED是⊙O的切线BC=2OE③△BOD为等边三角形④△EOD CAD正确的是(

A. ①② B. ②④ C. ①②④ D. ①②③④

【答案】C

【解析】如图连接OD.∵ACAB,∴∠BAC=90°,OAE=90°.在AOEDOE中,∵OA=ODAE=DEOE=OE,∴△AOE≌△DOESSS),∴∠OAE=∠ODE=90°,ODED.又ODO的半径,∴EDO的切线故①正确;

∵△AOE≌△DOE,∴∠AOE=∠DOE,∵OB=OD,∴∠B=∠BDO,∵∠B+∠BDO=∠AOE+∠DOE,∴∠B=∠AOE,∴OE∥BC,∵AO=OB,∴OE是△BAC的中位线,∴BC=2OE,故②正确;

∵OE∥BC,∴∠AEO=∠C.∵△AOE≌△DOE,∴∠DEO=∠C,∠ODE=∠OAE=90°,∴∠ODE=ADC=90°,∴△EOD∽△CAD,∴正确的①②④.故选C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网