题目内容
【题目】已知在菱形ABCD中,∠ABC=60°,对角线AC、BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作菱形AEFG,且∠AEF=60°.
(1)如图1,若点F落在线段BD上,请判断:线段EF与线段DF的数量关系是.
(2)如图2,
若点F不在线段BD上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;
(3)若点C,E,G三点在同一直线上,其它条件不变,请直接写出线段BE与线段BD的数系.
【答案】
(1)
解:如图1,连接AF,
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABO= ∠ABC=30°,
∴∠OAE=∠OAF=30°,
∴∠DAF=30°=∠ADO,
∴AF=FD,
∵AF=EF,
∴EF=FD;
∵∠AEF=60°,
∴∠BAE=30°=∠ABO,
∴AE=BE
(2)
解:成立,如图3,
连接CE,AF,
∵四边形ABCD是菱形,四边形AEFG是菱形,
∴AD=CD,AE=EF,BD垂直平分AC,∠ABC=∠ADC=60°,
∴∠ADC=∠AEF=60°,
∴△ACD和△AEF是等边三角形,
∴AC=AD,AE=AF=EF,∠CAD=∠EAF=60°,
∴∠CAE=∠DAF,
在△ACE和△ADF中, ,
△ACE≌△ADF,
∴EC=DF,
∵BD垂直平分AC,
∴EC=AE,
∴DF=AE=EF
(3)
解:∵AE=CE,
∴∠ACE=∠CAE,
∵点C,E,G在同一条直线上,
∴∠AEG=2∠CAE=30°,
∴∠CAE=15°,
∵∠BAO=60°°,
∴∠BAE=75°,
∵∠ABO= ∠ABC=30°,
∴∠AEB=75°=∠BAE,
∴BE=AB,
在Rt△AOB中,∠ABO=30°,
∴cos∠ABO= =
,
∴OB= AB=
BE,
∴BD=2OB= BE
【解析】(1)先利用菱形的性质得出∠ABO=∠ADO=30°,AC⊥BD,即可求出∠FAD=30°即可得出结论;(2)先判断出△ACD和△AEF是等边三角形,进而得出∠CAE=∠DAF,即可判断出△ACE≌△ADF,即可得出结论;(3)先求出∠CAE=15°,进而判断出BE=AB,再找出OB与AB的关键,代换即可得出结论.
![](http://thumb.zyjl.cn/images/loading.gif)