题目内容

【题目】如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A

(1)求抛物线的解析式;
(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;
(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

【答案】
(1)

解:由对称性得:A(﹣1,0),

设抛物线的解析式为:y=a(x+1)(x﹣2),

把C(0,4)代入:4=﹣2a,

a=﹣2,

∴y=﹣2(x+1)(x﹣2),

∴抛物线的解析式为:y=﹣2x2+2x+4;


(2)

解:如图1,设点P(m,﹣2m2+2m+4),过P作PD⊥x轴,垂足为D,

∴S=S梯形+SPDB= m(﹣2m2+2m+4+4)+ (﹣2m2+2m+4)(2﹣m),

S=﹣2m2+4m+4=﹣2(m﹣1)2+6,

∵﹣2<0,

∴S有最大值,则S=6;


(3)

解:如图2,存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,

理由是:

设直线BC的解析式为:y=kx+b,

把B(2,0)、C(0,4)代入得:

解得:

∴直线BC的解析式为:y=﹣2x+4,

设M(a,﹣2a+4),

过A作AE⊥BC,垂足为E,

则AE的解析式为:y= x+

则直线BC与直线AE的交点E(1.4,1.2),

设Q(﹣x,0)(x>0),

∵AE∥QM,

∴△ABE∽△QBM,

①,

由勾股定理得:x2+42=2×[a2+(﹣2a+4﹣4)2]②,

由①②得:a1=4(舍),a2=

当a= 时,x=

∴Q(﹣ ,0).


【解析】(1)由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;(2)作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;(3)画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;两方程式组成方程组求解并取舍.
本题是二次函数的综合问题,综合性较强;考查了利用待定系数法求二次函数和一次函数的解析式,并利用方程组求图象的交点坐标,将函数和方程有机地结合,进一步把函数简单化;同时还考查了相似的性质:在二次函数的问题中,如果利用勾股定理不能求的边可以考虑利用相似的性质求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网