题目内容

【题目】阅读下列材料:

解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法

解:∵x﹣y=2,∴x=y+2 又∵x>1∴y+2>1∴y>﹣1

∵y<0∴﹣1<y<0…①

同理可得1<x<2…②

①+②得:﹣1+1<x+y<0+2∴x+y的取值范围是0<x+y<2

按照上述方法,完成下列问题:

(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是   

(2)已知关于x,y的方程组的解都是正数

求a的取值范围;若a﹣b=4,求a+b的取值范围.

【答案】(1)1<x+y<5(2)①a>1②﹣2<a+b<8

【解析】试题分析:(1)模仿阅读材料解答即可;
(2)①先把不等式组解出,再根据解为正数列关于a的不等式组解出即可;
②分别求a、b的取值,相加可得结论.

试题解析:

(1)∵x﹣y=3,

∴x=y+3,

∵x>2,

∴y+3>2,

∴y>﹣1,

∵y<1,

∴﹣1<y<1…①

同理可得2<x<4…②

①+②得:﹣1+2<x+y<1+4,

∴x+y的取值范围是1<x+y<5,

故答案为:1<x+y<5;

2解方程组

解得

∵x>0,y>0,

解不等式组得:a>1,

a的取值范围为:a>1;

②)∵a﹣b=4,a>1,

∴a=b+4>1,

∴b>﹣3,

∴a+b>﹣2;

∵a+b=2b+4,b<2,

∴a+b<8.

故﹣2<a+b<8,

a+b的取值范围为:﹣2<a+b<8.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网