题目内容
【题目】如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以 cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是( )
A.
B.
C.
D.
【答案】D
【解析】解:作AH⊥BC于H,
∵AB=AC=4cm,
∴BH=CH,
∵∠B=30°,
∴AH= AB=2,BH= AH=2 ,
∴BC=2BH=4 ,
∵点P运动的速度为 cm/s,Q点运动的速度为1cm/s,
∴点P从B点运动到C需4s,Q点运动到C需8s,
当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP= x,
在Rt△BDQ中,DQ= BQ= x,
∴y= x x= x2 ,
当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4
在Rt△BDQ中,DQ= CQ= (8﹣x),
∴y= (8﹣x)4 =﹣ x+8 ,
综上所述,y= .
故选D.
【考点精析】利用函数的图象对题目进行判断即可得到答案,需要熟知函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.
练习册系列答案
相关题目