题目内容
【题目】已知点P(x0 , y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.
【答案】
(1)解:因为直线y=x﹣1,其中k=1,b=﹣1,
所以点P(1,﹣1)到直线y=x﹣1的距离为:d= = = =
(2)解:⊙Q与直线y= x+9的位置关系为相切.
理由如下:
圆心Q(0,5)到直线y= x+9的距离为:d= = =2,
而⊙O的半径r为2,即d=r,
所以⊙Q与直线y= x+9相切
(3)解:当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,
因为点(0,4)到直线y=﹣2x﹣6的距离为:d= = =2 ,
因为直线y=﹣2x+4与y=﹣2x﹣6平行,
所以这两条直线之间的距离为2
【解析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;
(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断 Q与直线y=x+9相切;
(3)利用两平行线间的距离定义,在直线y=-2x+4上任意取一点,然后计算这个点到直线y=-2x-6的距离即可.
【考点精析】通过灵活运用切线的判定定理,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线即可以解答此题.