题目内容
【题目】如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s),当t= s时,以A、C、E、F为顶点四边形是平行四边形.
【答案】2或6.
【解析】
试题解析:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,
则CF=BC-BF=6-2t(cm),
∵AG∥BC,
∴当AE=CF时,四边形AECF是平行四边形,
即t=6-2t,
解得:t=2;
②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,
则CF=BF-BC=2t-6(cm),
∵AG∥BC,
∴当AE=CF时,四边形AEFC是平行四边形,
即t=2t-6,
解得:t=6;
综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目