题目内容
【题目】已知,在△ABC中,AC = BC.分别过A,B点作互相平行的直线AM和BN.过点C的直线分别交直线AM,BN于点D,E。
(1)如图1.若CD= CE .求∠ABE的大小:
(2)如图2.∠ABC= ∠DEB= 60°.求证:AD+DC = BE.
【答案】(1)90°;(2)见详解
【解析】
(1)延长AC交BN于点F,依据条件得到∠FEC=∠ADC,证明△ADC≌△FEC,进而得到AC=FC, ∠DAC=∠EFC,依据等角替换与平角得出,即可得出∠ABE的大小;
(2)在EB上截取EH=EC,连CH,判定△DAC≌△HCB(AAS),即可得到AD=CH,DC=BH,再根据CH=CE=HE,即可得到BE=BH+HE=DC+AD.
解::(1)如图1,延长AC交BN于点F,
∵AM∥BN,
∴∠FEC=∠ADC
在△ADC和△FEC中,
∴△ADC≌△FEC(ASA),
∴AC=FC,∠DAC=∠EFC
∵AC=BC
∴AC=BC=FC
∴∠CBE=∠CFE,∠DAC=∠CBE
∴∠DAB+∠ABE=180°,2∠ABC+2∠CBE=180°
∴∠ABC+∠CBE=90°
即∠ABE=90°;
(2)如图2,在EB上截取EH=EC,连CH,
∵AC=BC,∠ABC=60°,
∴△ABC为等边三角形,
∵∠DEB=60°,
∴△CHE是等边三角形,
∴∠CHE=60°,∠HCE=60°,
∴∠BHC=120°,
∵AM∥BN,
∴∠ADC+∠BEC=180°,
∴∠ADC=120°,
∴∠DAC+∠DCA=60°,
又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,
∴∠DCA+∠BCH=60°,
∴∠DAC=∠BCH,
在△DAC与△HCB中,
∴△DAC≌△HCB(AAS),
∴AD=CH,DC=BH,
又∵CH=CE=HE,
∴BE=BH+HE=DC+AD.