题目内容
【题目】已知在四边形ABCD中,∠A=90°,AB=3,AD=4,BC=12,CD=13,求四边形ABCD的面积.
【答案】36
【解析】
试题根据勾股定理求得BD=5;由勾股定理的逆定理判定△BCD为直角三角形,则四边形ABCD的面积=△ABD的面积+△BCD的面积.
试题解析:∵在△ABD中,∠A是直角,AB=3,AD=4,
∴由勾股定理得 BD2=AD2+AB2=25.则BD=5,
又∵在△BCD中,BC=12,DC=13,
∴CD2=BD2+BC2=169,
∴△BCD为直角三角形,且∠DBC=90°,
∴S四边形ABCD=S△ABD+S△BCD=ADAB+BDBC=×4×3+×5×12=36.
即四边形ABCD的面积是36.
考点: 1.勾股定理;2.勾股定理的逆定理.
练习册系列答案
相关题目
【题目】九年级数学兴趣小组经过市场调查,得到某种图书每月的销售与售价的关系为函数关系如下表:
售价(元/本) | 50 | 55 | 60 | 65 | … |
月销量(本) | 2000 | 1800 | 1600 | 1400 | … |
已知该图书的进价为每本30元,设售价为x元.
(1)请用含x的式子表示:①销售该图书每本的利润是元,②月销量是件.(用x表示直接写出结果)
(2)若销售图书的月利润为48000元,则每本图书需要售价多少元?
(3)设销售该图书的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?