题目内容
【题目】如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度数.
(2)求四边形ABCD的面积.
【答案】(1)∠BAD=135°;(2)四边形ABCD的面积 2+
【解析】试题分析:(1)由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.
(2)连接AC,则可以计算△ABC的面积,根据AB、BC可以计算AC的长,根据AC,AD,CD可以判定△ACD为直角三角形,根据AD,CD可以计算△ACD的面积,四边形ABCD的面积为△ABC和△ACD面积之和.
试题解析:
(1)∵∠B=90°,AB=BC=2,
∴AC= =2
,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2,
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠DAB=45°+90°=135°.
故∠DAB的度数为135°.
(2)连接AC,如图所示:
在直角△ABC中,AC为斜边,且AB=BC=2,则AC=,
∵AD=1,CD=3,
∴AC2+CD2=AC2,
即△ACD为直角三角形,且∠ADC=90°,
四边形ABCD的面积=S△ABC+S△ACD=AB×BC+
AD×AC=2+
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目