题目内容
【题目】如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D
(1) 若点C恰在EF上,如图1,则∠DBA=_________
(2) 将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由
(3) 若将题目条件“∠ACB=90°”,改为:“∠ACB=120°”,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)
【答案】(1)45°;(2)见解析;(3)60°.
【解析】
(1)根据两直线平行,同旁内角互补求出∠CAD=90°,然后求出∠BAC=45°,从而得到∠ABC=45°,再根据BD平分∠FBC求出∠DBC=90°,然后求解即可;
(2)根据两直线平行,内错角相等可得∠2=∠3,再根据三角形的内角和定理表示出∠4,然后表示∠5,再利用平角等于180°列式表示出∠DBA整理即可得解;
(3)根据(2)的结论计算即可得解.
解:(1)∵EF∥GH,
∴∠CAD=180°-∠ACB=180°-90°=90°,
∵∠DAB=∠BAC,
∴∠BAC=45°,
∴∠ABC=45°,
∵BD平分∠FBC,
∴∠DBC=×180°=90°,
∴∠DBA=90°-45°=45°;
(2)解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x,
∵EF∥GH,
∴∠2=∠3,
在△ABC内,∠4=180°-∠ACB-∠1-∠3=180°-∠ACB-2x,
∵直线BD平分∠FBC,
∴∠5=(180°-∠4)=(180°-180°+∠ACB+2x)=∠ACB+x,
∴∠DBA=180°-∠3-∠4-∠5,
=180°-x-(180°-∠ACB-2x)-(∠ACB+x),
=180°-x-180°+∠ACB+2x-∠ACB-x,
=∠ACB,
=×90°,
=45°;
(3)由(2)可知,∠ACB=120°时,
∠DBA=×120°=60°.