题目内容
【题目】如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).
(1)求抛物线的函数解析式;
(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;
(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.
【答案】(1) y=x2﹣2x.(2) t=1.8秒;(3) R(
,
).
【解析】
试题分析:(1)根据抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),利用待定系数法求抛物线解析式;
(2)如图1,由已知条件,可以计算出OD、AE等线段的长度.当PQ⊥AD时,过点O作OF⊥AD于点F,此时四边形OFQP、OFAE均为矩形.则在Rt△ODF中,利用勾股定理求出DF的长度,从而得到时间t的数值;
(3)因为OB为定值,欲使△ROB面积最大,只需OB边上的高最大即可.按照这个思路解决本题.
如图2,当直线l平行于OB,且与抛物线相切时,OB边上的高最大,从而△ROB的面积最大.联立直线l和抛物线的解析式,利用一元二次方程判别式等于0的结论可以求出R点的坐标.
试题解析:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),
∴,
解得
∴抛物线的解析式为:y=x2﹣2x.
(2)如图1,连接AC交OB于点E,由垂径定理得AC⊥OB.
∵AD为切线,
∴AC⊥AD,
∴AD∥OB.
过O点作OF⊥AD于F,
∴四边形OFAE是矩形,
∵tan∠AOB=,
∴sin∠AOB=,
∴AE=OAsin∠AOB=4×=2.4,
OD=OAtan∠OAD=OAtan∠AOB=4×=3.
当PQ⊥AD时,OP=t,DQ=2t.
在Rt△ODF中,
∵OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,
由勾股定理得:DF=,
∴t=1.8秒;
(3)如图2,设直线l平行于OB,且与抛物线有唯一交点R(相切),
此时△ROB中OB边上的高最大,所以此时△ROB面积最大.
∵tan∠AOB=,∴直线OB的解析式为y=
x,
由直线l平行于OB,可设直线l解析式为y=x+b.
∵点R既在直线l上,又在抛物线上,
∴x2﹣2x=
x+b,化简得:2x2﹣11x﹣4b=0.
∵直线l与抛物线有唯一交点R(相切),
∴判别式△=0,即112+32b=0,解得b=﹣,
此时原方程的解为x=,即xR=
,
而yR=xR2﹣2xR=
∴点R的坐标为R(,
).
![](http://thumb.zyjl.cn/images/loading.gif)