题目内容
【题目】如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2= 的图象交于C、D两点,已知点C的坐标为(﹣4,﹣1),点D的横坐标为2.
(1)求反比例函数与一次函数的解析式;
(2)直接写出当x为何值时,y1>y2?
(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.
【答案】
(1)解:把,C(﹣4,﹣1)代入y2= ,得n=4,
∴y2= ;
∵点D的横坐标为2,
∴点D的坐标为(2,2),
把C(﹣4,﹣1)和D(2,2)代入y1=kx+b得,
解得: ,
∴一次函数解析式为y1= x+1.
(2)解:根据图象得:﹣4<x<0或x>2;
(3)解:当y1=0时, x+1=0,
解得:x=﹣2,
∴点A的坐标为(﹣2,0),
如图,设点P的坐标为(m, ),
∵△APE的面积为3,
∴ (m+2) =3,
解得:m=4,
∴ =1,
∴点P的坐标为(4,1).
【解析】(1)先根据已知点C的坐标求出反比例函数的解析式,再将点D的横坐标为2代入反比例函数解析式即可求出点D的坐标,然后将点C、点D的坐标代入一次函数解析式即可求解。
(2)y1>y2,根据两函数图像交点C、D的坐标及y轴,观察直线x=-4、直线x=2、y轴,即可得出y1>y2时x的取值范围。
(3)先根据一次函数解析式求出点A的坐标,点P在双曲线上,设出点P的坐标,根据△APE的面积为3,求出m的值,就可以得到点P的坐标,再将点P的横坐标大于2,就可得到结论。
【考点精析】利用确定一次函数的表达式对题目进行判断即可得到答案,需要熟知确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.