题目内容

【题目】如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A、B,与一次函数y2=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x的图象于点C、D.
(1)求一次函数y1=kx+b的表达式;
(2)若点M是线段OD的中点,求a的值.

【答案】
(1)解:∵M的横坐标为2,点M在直线y=x上,

∴y=2,

∴M(2,2)

把M(2,2)、A(6,0)代入y1=kx+b中,

可得:

解得:

∴函数的表达式为:y1=﹣ x+3


(2)解:∵PD⊥x轴,

∴PC∥OB

∴∠BOM=∠CDM,

∵点M是线段CD的中点,

∴MO=MD

在△MBO与△MCD中

∴△MBO≌△MCD(ASA)

∴OB=CD

当x=0时,

y1= x+3=3,

∴OB=2,

∴DC=3,

当x=a时,

y1=﹣ x+3=3﹣ a,

∴y2=x=a

即D(a,a),C(a,﹣ a+3)

∴DC=a﹣(﹣ a+3)= a﹣3=3,

∴a=4


【解析】(1)先求出M的坐标,然后将M与A的坐标代入y1=kx+b中,即可求出k与b的值.(2)根据条件先证明△MBO≌△MCD(ASA),由此可知OB=CD,分别求出OB与CD的长度即可求出a的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网