题目内容
【题目】如图:在数轴上点表示数,点表示数,点表示数是最大的负整数,且满足.
(1)a=________,b=________,c=________.
(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;
(3)点开始在数轴上运动,若点以每秒1个单位长度的速度向左运动,同时,点和点分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为,则________,________.(用含的代数式表示)
(4)的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
【答案】(1)-3;-1;5;(2)3;(3),;(4)的值为定值16.
【解析】
(1)根据b为最大的负整数可得出b的值,再根据绝对值以及偶次方的非负性即可得出a、c的值;
(2)根据折叠的性质结合a、b、c的值,即可找出与点B重合的数;
(3)根据运动的方向和速度结合a、b、c的值,即可找出t秒后点A、B、C分别表示的数,利用两点间的距离即可求出AB、BC的值;
(4)将(3)的结论代入3BC-AB中,可得出3BC-AB为定值16,此题得解.
(1)∵是最大的负整数,且满足,
∴,,,
∴,.
故答案为:-3;-1;5.
(2).
故答案为:3.
(3)t秒钟过后,点表示的数为,点表示的数为,点C表示的数为,
∴,.
故答案为:,.
(4)∵,,
∴.
∴的值为定值16.
【题目】如图,P是直径AB上的一点,AB=6,CP⊥AB交半圆于点C,以BC为直角边构造等腰Rt△BCD,∠BCD=90°,连接OD.
小明根据学习函数的经验,对线段AP,BC,OD的长度之间的关系进行了探究.
下面是小明的探究过程,请补充完整:
(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,BC,OD的长度的几组值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
(3)结合函数图象,解决问题:当OD=2BC时,线段AP的长度约为________.