题目内容
【题目】为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:
(1)扇形统计图中m的值为 ,n的值为 ;
(2)补全条形统计图;
(3)在选择B类的学生中,甲、乙、丙三人在乒乓球项目表现突出,现决定从这三名同学中任选两名参加市里组织的乒乓球比赛,选中甲同学的概率是 .
【答案】(1)20,25;(2)补图见解析;(3)
【解析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;
解:(1)总人数=15÷25%=60(人).
A类人数=60﹣24﹣15﹣9=12(人).
∵12÷60=0.2=20%,
∴m=20,
n=25.
(2)15÷25%×20%=12
条形统计图如图所示,
(3)从这三名同学中任选两名参加市里组织的乒乓球比赛,选中甲同学的概率为.
“点睛”本题考查的是条形统计图与扇形统计图,根据题意得出样本总数是解答此题的关键.
【题目】某水果公司以1.5元/千克的成本新进了20000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在下表中:
柑橘总质量n/千克 | 损坏柑橘质量m/千克 | 柑橘损坏的频率m/n |
100 | 11.00 | 0.110 |
200 | 21.00 | 0.105 |
300 | 30.30 | |
400 | 38.84 | |
500 | 48.50 | |
600 | 61.86 | |
700 | 70.64 | |
800 | 78.48 | |
900 | 89.14 | |
1000 | 103.08 |
(1)请你完成表格;
(2)如果公司希望这些柑橘能够获得税前利润10000元以上,那么在出售柑橘(已去掉损坏的柑橘)时,大约每千克定价为多少元比较合适?
【题目】在我市开展的“‘新华杯’中学双语课外阅读”活动中,某中学为了解八年级400名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 2 | 10 | 15 | 17 | 6 |
(1)求这50个样本数据的众数和中位数;
(2)根据样本数据,估计该校八年级400名学生在本次活动中读书多于2册的人数.