题目内容
在平面直角坐标系中,二次函数y=x2-1的图象与x轴的交点的个数是( )
分析:根据x轴上点的坐标特点令y=0,求出x的值即可.
解答:解:∵x轴上点的纵坐标为0,
∴令y=0,则x2-1=0,解得x=±1,
∴抛物线与x轴有两个交点,即(+1,0)、(-1,0).
故选B.
∴令y=0,则x2-1=0,解得x=±1,
∴抛物线与x轴有两个交点,即(+1,0)、(-1,0).
故选B.
点评:本题考查的是抛物线与x轴的交点问题,熟知x轴上点的坐标特点是解答此题的关键.
练习册系列答案
相关题目