题目内容
【题目】如图1:在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连结BE,CD,点M、N、P分别是BE、CD、BC的中点.
(1)观察猜想
图1中△PMN的形状是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由.
【答案】(1)等边三角形;(2)△PMN的形状不发生改变,仍为等边三角形.
【解析】分析:(1)由等边三角形的性质,得到AB=BC=AC,∠A=∠ABC=∠ACB=60°.由AD=AE,得到BD=EC.由中位线的性质,得到NP∥BD,BD=2NP,进而有∠NPC=∠ABC=60°,BD=2NP.
同理有EC=2MP,∠MPB=∠ECB=60°,得到MP=NP,∠MPN=180°-∠MPB-∠NPC=60°,即可得到结论.
(2)连接BD,CE.易证△ABD≌△ACE,得到BD=CE,∠ABD=∠ACE.由PM是△BCE的中位线,得到PM=CE且PM∥BD.同理可证PN=BD且PN∥BD,得到BD=CE,∠MPB=∠ECB,∠NPC=∠DBC,进而得到∠MPN=60°,即可得到结论.
详解:(1)等边三角形 .理由如下:
∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠ABC=∠ACB=60°.
∵AD=AE,∴BD=EC.
∵N、P分别是DC、BC的中点,∴NP是△BCD的中位线,∴NP∥BD,BD=2NP,∴∠NPC=∠ABC=60°,BD=2NP.
同理可证:EC=2MP,∠MPB=∠ECB=60°.
∴MP=NP,∠MPN=180°-∠MPB-∠NPC=60°,∴△MPN是等边三角形.
(2)△PMN的形状不发生改变,仍为等边三角形.理由如下:
连接BD,CE.
由旋转可得∠BAD=∠CAE.
∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE.
∵M是BE的中点,P是BC的中点,
∴PM是△BCE的中位线,
∴PM=CE且PM∥BD.
同理可证PN=BD且PN∥BD,
∴BD=CE,∠MPB=∠ECB,∠NPC=∠DBC,
∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC-∠ABD)= ∠ACB+∠ABC=120°,
∴∠MPN=60°,
∴△PMN是等边三角形.
【题目】某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改资金(万元) | 2.5 | 3 | 4 | 4.5 |
产品成本(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;
(2)按照这种变化规律,若2017年已投入资金5万元.
①预计生产成本每件比2016年降低多少万元?
②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).