题目内容
【题目】如图,□的周长为,,相交于点,交于,则的周长为__________.
【答案】15
【解析】
根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,OE⊥AC可说明EO是线段AC的中垂线,中垂线上任意一点到线段两端点的距离相等,则AE=CE,再利用平行四边形ABCD的周长为30可得AD+CD=15,进而可得△DCE的周长.
解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,点O平分BD、AC,即OA=OC,
又∵OE⊥AC,
∴OE是线段AC的中垂线,
∴AE=CE,
∴AD=AE+ED=CE+ED,
∵ABCD的周长为,
∴CD+AD=15cm,
∴的周长= CE+ED +CD=AD+CD=15cm,
故答案为:15.
练习册系列答案
相关题目
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空①;②;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为 ,你认为推荐谁参加比赛更合适,请说明理由.