题目内容

【题目】在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x﹣y).

(1)如图1,如果O的半径为

①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与O的位置关系;

②若点P在直线y=x+2上,点P的变换点P′在O的内,求点P横坐标的取值范围.

(2)如图2,如果O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与O上任意一点距离的最小值.

【答案】(1)①点N(﹣2,﹣1)的变换点在O外;②点P横坐标的取值范围为﹣2<x<0;(2)点P与O上任意一点距离的最小值为﹣1.

【解析】

试题分析:(1)①根据新定义得到点M的变换点M′的坐标为(2,2),于是根据勾股定理计算出OM′=2,则根据点与圆的位置关系的判定方法可判断点M的变换点在O上;同样方法可判断点N(﹣2,﹣1)的变换点在O

②利用一次函数图象上点的坐标特征,设P点坐标为(x,x+2),利用新定义得到P点的变换点为P′的坐标为(2x+2,﹣2),则根据勾股定理计算出OP′=,然后利用点与圆的位置关系得到<2,解不等式得﹣2<x<0;

(2)设点P′的坐标为(x,﹣2x+6),P(m,n),根据新定义得到m+n=x,m﹣n=﹣2x+6,消去x得3m+n=6,则n=﹣3m+6,于是得到P点坐标为(m,﹣3m+6),则可判断点P在直线y=﹣3x+6上,设直线y=﹣3x+6与x轴相交于点A,与y轴相交于点B,过O点作OHAB于H,交O于C,如图2,易得A(2,0),B(0,6),利用勾股定理计算出AB=2,再利用面积法计算出OH=,所以CH=﹣1,当点P在H点时,PC为点P与O上任意一点距离的最小值.

解:(1)①M(2,0)的变换点M′的坐标为(2,2),则OM′==2,所以点M(2,0)的变换点在O上;

N(﹣2,﹣1)的变换点N′的坐标为(﹣3,﹣1),则ON′==>2,所以点N(﹣2,﹣1)的变换点在O外;

②设P点坐标为(x,x+2),则P点的变换点为P′的坐标为(2x+2,﹣2),则OP′=

点P′在O的内,

<2

(2x+2)2<4,即(x+1)2<1,

﹣1<x+1<1,解得﹣2<x<0,

即点P横坐标的取值范围为﹣2<x<0;

(2)设点P′的坐标为(x,﹣2x+6),P(m,n),

根据题意得m+n=x,m﹣n=﹣2x+6,

3m+n=6

即n=﹣3m+6,

P点坐标为(m,﹣3m+6),

点P在直线y=﹣3x+6上,

设直线y=﹣3x+6与x轴相交于点A,与y轴相交于点B,过O点作OHAB于H,交O于C,如图2,

则A(2,0),B(0,6),

AB==2

OHAB=OAOB,

OH==

CH=﹣1,

即点P与O上任意一点距离的最小值为﹣1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网