题目内容
【题目】如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为__.
【答案】36°
【解析】解:连接AP.∵P为其底角平分线的交点,∴点P是△ABC的内心,∴AP平分∠BAC,∵AB=AC,∴∠ABC=∠ACB,设∠A=2x,则∠DAP=x,∠PBC=∠PCB=45°﹣x,∵DA=DP,∴∠DAP=∠DPA,由折叠的性质可得:∠PDC=∠PBC=45°﹣x,则∠ADP=180°﹣∠PDC=135°+x,在△ADP中,∠DAP+∠DPA+∠ADP=180°,即x+x+135°+x=180°,解得:x=18,则∠A=2x=36°.故答案为:36°.
练习册系列答案
相关题目