题目内容
【题目】如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.
(1)若优弧上一段的长为10π,求∠AOP度数及x的值.
(2)若线段PQ的长为10,求这时x的值.
【答案】(1) ∠AOP=90°,x= ;(2) x的值为或﹣+5或.
【解析】
(1)由=10π,解得n=90°,即∠POQ=90°,在Rt△POQ中,OP=20,tan∠PQO=tan∠QOB=,即可得出x的值;
解:(1)如图1,
由=10π,
解得n=90°,
∴∠POQ=90°,
∵PQ∥OB,
∴∠PQO=∠BOQ,
∴tan∠PQO=tan∠QOB==
∴OQ=
∴x=;
(2)分三种情况:
①如图2,作OH⊥PQ于H,设OH=k,QH=k.
在Rt△OPH中,∵OP2=OH2+PH2,
∴202=(k)2+(10﹣k)2,
整理得:k2﹣5k﹣75=0,
解得k=或k=(舍弃),
∴OQ=2k=
此时x的值为
②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.
在Rt△在Rt△OPH中,∵OP2=OH2+PH2,
∴202=(k)2+(10+k)2,
整理得:k2+5k﹣75=0,
解得k=(舍弃)或k=(舍弃),
∴OQ=2k=,
此时x的值为﹣+5
③如图4,作OH⊥PQ于H,设OH=k,QH=k.
在Rt△OPH中,∵OP2=OH2+PH2,
∴202=(k)2+(10﹣k)2,
整理得:k2﹣5k﹣75=0,
解得k=或(舍弃),
∴OQ=2k=
此时x的值为.
综上所述,满足条件的x的值为或﹣+5或.
练习册系列答案
相关题目