题目内容
【题目】已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是( )
A.12cm2B.24cm2C.36cm2D.48cm2
【答案】B
【解析】
根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形,由菱形的性质以及勾股定理求出对角线CD的长,代入菱形面积公式即可求解.
如图:
∵分别以A和B为圆心,5cm的长为半径画弧,两弧相交于C、D,
∴AC=AD=BD=BC=5cm,
∴四边形ADBC是菱形,
∴AB⊥CD,AO=OB=4cm,CD=2OC,
∴由勾股定理得:OC=3cm,
∴CD=6cm,
∴四边形ADBC的面积=ABCD=
×8×6=24cm2,
故选:B.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中, 他俩的成绩分别如下表,请根据表中数据解答下列问题:
第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 众数 | 中位数 | 方差 | |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | 80 分 | 80 分 |
(1)把表格补充完整:
(2)在这五次测试中,成绩比较稳定的同学是多少;若将 80 分以上(含 80 分) 的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;
(3)历届比赛表明,成绩达到80分以上(含 80分)就很可能获奖,成绩达到 90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.