题目内容
【题目】如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )
A. 4或4.8 B. 3或4.8 C. 2或4 D. 1或6
【答案】B
【解析】试题分析:根据相似三角形的性质,由题意可知有两种相似形式,△ADE∽△ABC和△ADE∽△ACB,可求运动的时间是3秒或4.8秒.
解:根据题意得:设当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是x秒,
①若△ADE∽△ABC,则AD:AB=AE:AC,
即x:122x=x:6,
解得:x=3;
②若△ADE∽△ACB,则AD:AC=AE:AB,
即x:12=122x:6,
解得:x=4.8;
所以当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是3秒或4.8秒.
故选B.
练习册系列答案
相关题目