题目内容
【题目】如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;
(1)写出点D的坐标 ;
(2)若点E为x轴上一点,且S△AOE=,
①求点E的坐标;
②判断△AOE与△AOD是否相似并说明理由;
(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
【答案】(1)(6,4);(2)①点E坐标或;②△AOE与△AOD相似,理由见解析;(3)存在,F1(﹣3,0);F2(3,8);;
【解析】
(1)求出方程x2﹣7x+12=0的两个根,OA=4,OB=3,可求点A坐标,即可求点D坐标;
(2)①设点E(x,0),由三角形面积公式可求解;
②由两组对边对应成比例,且夹角相等的两个三角形相似,可证△AOE∽△DAO;
(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.
解:(1)∵OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,
∴OA=4,OB=3,
∴点B(﹣3,0),点A(0,4),且AD∥BC,AD=BC=6,
∴点D(6,4)
故答案为:(6,4);
(2)①设点E(x,0),
∵,
∴
∴
∴点E坐标或
②△AOE与△AOD相似,
理由如下:在△AOE与△DAO中,,,
∴.且∠DAO=∠AOE=90°,
∴△AOE∽△DAO;
(3)存在,
∵OA=4,OB=3,BC=6,
∴,OB=OC=3,且OA⊥BO,
∴AB=AC=5,且AO⊥BO,
∴AO平分∠BAC,
①AC、AF是邻边,点F在射线AB上时,AF=AC=5,
所以点F与B重合,
即F(﹣3,0),
②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,
点F(3,8).
③AC是对角线时,做AC垂直平分线L,AC解析式为,直线L过(,2),且k值为(平面内互相垂直的两条直线k值乘积为﹣1),
L解析式为y=x+,联立直线L与直线AB求交点,
∴F(﹣,﹣),
④AF是对角线时,过C做AB垂线,垂足为N,
根据等积法求,勾股定理得出,,做A关于N的对称点即为F,,过F做y轴垂线,垂足为G,,
∴F(﹣,).
综上所述:F1(﹣3,0);F2(3,8);;.
【题目】某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:
分组 | 分数段(分) | 频数 |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)m的值为 ;
(2)该班学生中考体育成绩的中位数落在 组;(在A、B、C、D、E中选出正确答案填在横线上)
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.