题目内容
【题目】如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.
【答案】解:∵四边形ABCD为矩形,
∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,
∵折叠矩形的一边AD,使点D落在BC边的点F处
∴AF=AD=10,DE=EF,
在Rt△ABF中,BF==6,
∴FC=BC﹣BF=4,
设EC=x,则DE=8﹣x,EF=8﹣x,
在Rt△EFC中,
∵EC2+FC2=EF2 ,
∴x2+42=(8﹣x)2 , 解得x=3,
∴EC的长为3cm.
【解析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2 , 然后解方程即可.
【考点精析】关于本题考查的翻折变换(折叠问题),需要了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.
练习册系列答案
相关题目
【题目】已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 10 | 5 | 2 | 1 | 2 | 5 | … |
若A(m,y1),B(m﹣2,y2)两点都在该函数的图象上,当m=时,y1=y2 .