题目内容
计算:﹣12+﹣4cos45°﹣|1﹣|
如图,在矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且C、D两点在函数y=的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率是( ).
A. B. C. D.
先化简,再求值:
[(x+2y)2-(3x+y)(-y+3x)-5y2]÷(-4x),其中x=-,y=2.
下列说法:①两点之间,线段最短;②同旁内角互补;③若AC=BC,则点C是线段AB的中点;④经过一点有且只有一条直线与这条直线平行,其中正确的说法有( )
A. 1个 B. 2个 C. 3个 D. 4个
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
若单项式2ax+1b与﹣3a3by+4是同类项,则xy=_____.
如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径( )
A. 5 B. 10 C. 8 D. 6
计算: ﹣|﹣4|﹣2cos45°﹣(3﹣π)0.
如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).
(1)求抛物线的解析式和顶点D的坐标;
(2)求证:∠DAB=∠ACB;
(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.