题目内容
【题目】如图,直线AB与CD相交于O,OE是∠AOC的平分线,OF⊥CD,OG⊥OE,∠BOD=52°.
(1)求∠AOC,∠AOF的度数;
(2)求∠EOF与∠BOG是否相等?请说明理由.
【答案】(1)∠AOC=52°,∠AOF=38°;(2)相等,理由见解析.
【解析】
(1)直接利用垂直的定义结合对顶角的定义得出∠AOC,∠AOF的度数;
(2)分别求出∠EOF与∠BOG的度数进而得出答案.
(1)∵OF⊥CD,
∴∠COF=90°,
又∵∠AOC与∠BOD是对顶角,
∴∠AOC=∠BOD=52°,
∴∠AOF=∠COF-∠AOC=90°-52°=38°;
(2)相等,
理由:∵∠AOC与∠BOD是对顶角,
∴∠AOC=∠BOD=52°,
∵OE是∠AOC的平分线,
∴∠AOE=∠AOC=26°,
又∵OG⊥OE,
∴∠EOG=90°,
∴∠BOG=180°-∠AOE-∠EOG=64°,
∵∠EOF=∠AOF+∠AOE=38°+26°=64°,
∴∠EOF=∠BOG.
练习册系列答案
相关题目