题目内容
在Rt△ABC中,∠C=90゜,AC=5,BC=12,以C为圆心,R为半径作圆与斜边AB相切,求R的值.
解:Rt△ABC中,∠C=90°,AC=5,BC=12;
由勾股定理,得:AB2=52+122=169,
∴AB=13;
∵S△ABC=AC•BC=AB•R;
∴R==.
分析:R的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出R的值.
点评:本题考查的知识点有:切线的性质、勾股定理、直角三角形面积的求法;斜边上的高即为圆的半径是本题的突破点.
由勾股定理,得:AB2=52+122=169,
∴AB=13;
∵S△ABC=AC•BC=AB•R;
∴R==.
分析:R的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出R的值.
点评:本题考查的知识点有:切线的性质、勾股定理、直角三角形面积的求法;斜边上的高即为圆的半径是本题的突破点.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
A、asinA | ||
B、
| ||
C、acosA | ||
D、
|
如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为( )
A、9:4 | B、9:2 | C、3:4 | D、3:2 |