题目内容
【题目】在下列结论中:
(1)有一个外角是120°的等腰三角形是等边三角形;
(2)有两个外角相等的等腰三角形是等边三角形;
(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形;
(4)三个外角都相等的三角形是等边三角形.
其中正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
【答案】D
【解析】试题分析:根据等边三角形的性质和定义,可得:有一个角为60°的等腰三角形是等边三角形;三个内角都相等的三角形为等边三角形;再由中线的性质和三角形内角和的定义可解答本题.
解:(1):因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.
(2):两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.
(3):等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.
(4)若每一个角各取一个外角,则所有内角相等,即三角形是等边三角形;若一个顶点取2个的话,就不成立,该结论错误.
故选D.
练习册系列答案
相关题目