题目内容

【题目】平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A'B'OC'.

(1)若抛物线过点C,A,A',求此抛物线的解析式;
(2)求平行四边形ABOC和平行四边形A'B'OC'重叠部分△OC'D的周长;
(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.

【答案】
(1)解:∵A′B′O′C′由ABOC旋转得到,且A的坐标为(0,3),得

点A′的坐标为(3,0).

设抛物线的解析式为y=ax2+bx+c,

将A,A′C的坐标代入,得

解得

抛物线的解析式y=﹣x2+2x+3


(2)解:∵AB∥OC,

∴∠OAB=∠AOC=90°,

∴OB= =

又∠OC′D=∠OCA=∠B,∠C′OD=∠BOA,

∴△C′OD∽△BOA,又OC′=OC=1,

= =

又△ABO的周长为4+

∴△C′OD的周长为 =1+


(3)解:

作MN⊥x轴交AA′于N点,

设M(m,﹣m2+2m+3),

AA′的解析式为y=﹣x+3,N点坐标为(m,﹣m+3),MN的长为﹣m2+3m,

S△AMA′= MNxA′= (﹣m2+3m)×3

=﹣ (m2﹣3m)=﹣ (m﹣ 2+

∵0<m<3,∴当m= 时,﹣m2+2m+3= ,M( ),

△AMA′的面积有最大值


【解析】(1)根据旋转的性质,可得A′点,根据待定系数法,可得答案;(2)根据相似三角形的判定与性质,可得答案;(3)根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网