题目内容
【题目】已知正方形,点为边的中点.
(1)如图1,点为线段上的一点,且,延长,分别与边,交于点,.
①求证:;
②求证:.
(2)如图2,在边上取一点,满足,连接交于点,连接延长交于点,求的值.
【答案】(1)详见解析;(2)
【解析】
试题分析:(1)①利用ASA判定证明两个三角形全等;②先利用相似三角形的判定,再利用相似三角形的性质证明;(2)构造直角三角形,求一个角的正切值.
试题解析:(1)①证明:∵四边形为正方形,∴,,
又,∴,又,∴,
∴(ASA),∴.
②证明:∵,点为中点,∴,∴,
又∵,从而,又,∴,
∴,即,由,得.
由①知,,∴,∴.
(2)解:(方法一)
延长,交于点(如图1),由于四边形是正方形,所以,
∴,又,∴,
故,即,
∵,,∴,由知,,
又,∴,不妨假设正方形边长为1,
设,则由,得,
解得,(舍去),∴,
于是,
(方法二)
不妨假设正方形边长为1,设,则由,得,
解得,(舍去),即,
作交于(如图2),则,∴,
设,则,,∵,即,
解得,∴,从而,此时点在以为直径的圆上,
∴是直角三角形,且,
由(1)知,于是.
练习册系列答案
相关题目
【题目】甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根据以上数据完成下表:
平均数 | 中位数 | 方差 | |
甲 | 8 | 8 | |
乙 | 8 | 8 | 2.2 |
丙 | 6 | 3 |
(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.