题目内容

如图所示,已知△ABC和△DCE均是等边三角形,点BC、E在同一条直线上,AEBD交于点OAECD交于点GACBD交于点F,连接OCFG,则下列结论中:①AEBD;②AGBF;③FGBE;④∠BOC=∠EOC,正确的是          

 

【答案】

①②③④

【解析】∵△ABC和△DCE均是等边三角形,

∴BC=AC,CD=CE,∠ACB=∠ECD=60°,

∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,

∴△BCD≌△ACE(SAS),

∴AE=BD,(①正确)

∠CBD=∠CAE,

∵∠BCA=∠ACG=60°,AC=BC,

∴△BCF≌△ACG(ASA),

∴AG=BF,(②正确)

同理:△DFC≌△EGC(ASA),

∴CF=CG,

∴△CFG是等边三角形,

∴∠CFG=∠FCB=60°,

∴FG∥BE,(③正确)

过C作CM⊥AE于M,CN⊥BD于N,

∵△BCD≌△ACE,

∴∠BDC=∠AEC,

∵CD=CE,∠CND=∠CMA=90°,

∴△CDN≌△CEM,

∴CM=CN,

∵CM⊥AE,CN⊥BD,

∴∠BOC=∠EOC,∴④正确;

故答案为:①②③④.

A
 
 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网