题目内容

【题目】如图,矩形中,,连接,以对角线为边按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形, ..按照此规律作下去,若矩形的面积记作,矩形的面积记作,矩形的面积记作, ... 的值为__________

【答案】

【解析】

首先根据矩形的性质,求出AC,根据边长比求出面积比,依次类推,得出规律,即可得解.

∵四边形ABCD是矩形,

ADDC

AC=

∵按逆时针方向作矩形ABCD的相似矩形AB1C1C

∴矩形AB1C1C的边长和矩形ABCD的边长的比为2

∴矩形AB1C1C的面积和矩形ABCD的面积的比54

∵矩形ABCD的面积=2×1=2

∴矩形AB1C1C的面积=

依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比54

∴矩形AB2C2C1的面积=

∴矩形AB3C3C2的面积=

按此规律第n个矩形的面积为:

故答案为:

练习册系列答案
相关题目

【题目】数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?

问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.

探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?

第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.

第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.

第三类:选正六边形.(仿照上述方法,写出探究过程及结论)

探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?

第四类:选正三角形和正方形

在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程

60x+90y360

整理,得2x+3y12

我们可以找到唯一组适合方程的正整数解为.

镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌

第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)

第六类:选正方形和正六边形,(不写探究过程,只写出结论)

探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?

第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网