题目内容

【题目】已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.

【答案】证明:∵∠B=∠ADE(已知), ∴DE∥BC(同位角相等,两直线平行)
∴∠1=∠DCB.(两直线平行,内错角相等)
∵CD⊥AB,GF⊥AB,
∴CD∥FG(平面内,垂直于同一条直线的两条直线平行),
∴∠2=∠DCB.(两直线平行,同位角相等)
∴∠1=∠2.(等量代换)
【解析】利用平行线的判定及性质,通过证明∠1=∠BCD=∠2达到目的.
【考点精析】本题主要考查了垂线的性质和平行线的判定与性质的相关知识点,需要掌握垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短;由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网