题目内容
【题目】如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1,以A1B、BA为邻边作□ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作□A1B1A2C2…;按此作法继续下去,则Cn的坐标( )
A.(﹣×4n,4n) B.(﹣×4n-1,4n-1)
C.(﹣×4n﹣1,4n) D.(﹣×4n,4n-1)
【答案】C.
【解析】
试题解析:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,
∴直线l的解析式为y=x.
∵AB⊥y轴,点A(0,1),
∴可设B点坐标为(x,1),
将B(x,1)代入y=x,得1=x,解得x=,
∴B点坐标为(,1),AB=.
在Rt△A1AB中,∠AA1B=90°-60°=30°,∠A1AB=90°,
∴AA1=AB=3,OA1=OA+AA1=1+3=4,
∵ABA1C1中,A1C1=AB=,
∴C1点的坐标为(-,4),即(-×40,41);
由x=4,解得x=4,
∴B1点坐标为(4,4),A1B1=4.
在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,
∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,
∵A1B1A2C2中,A2C2=A1B1=4,
∴C2点的坐标为(-4,16),即(-×41,42);
同理,可得C3点的坐标为(-16,4),即(-×42,43);
以此类推,则Cn的坐标是(-×4n-1,4n).
故选C.
练习册系列答案
相关题目