题目内容
【题目】如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.
(1)线段的长度为__________;
(2)求直线所对应的函数解析式;
(3)若点在线段上,在线段上是否存在点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1)15;(2);(3)
【解析】
(1)根据勾股定理即可解决问题;
(2)设AD=x,则OD=OA=AD=12-x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,可得OE=OB-BE=15-9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;
(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题。
解:(1)在Rt△ABC中,∵OA=12,AB=9,
故答案为15.
(2)如图,
设,则
根据轴对称的性质,,
又,
∴,
在中,,
即,则,
∴,
∴
设直线所对应的函数表达式为:
则,
解得
∴直线所对应的函数表达式为:.
故答案为:
(3)过点作交于点,过点作交于点,则四边形是平行四边形,再过点作于点,
由
得,即点的纵坐标为,
又点在直线:上,
∴,解得,
由于,所以可设直线,
∵在直线上
∴,解得
∴直线为,
令,则,解得,
∴
练习册系列答案
相关题目