题目内容

【题目】如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于(
A.90°
B.75°
C.70°
D.60°

【答案】D
【解析】解:∵AB=BC=CD=DE=EF,∠A=15°, ∴∠BCA=∠A=15°,
∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,
∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,
∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,
∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,
∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,
∴∠DEF=180°﹣(∠EDF+∠EFC)=180°﹣120°=60°.
故选D.
根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网