题目内容
【题目】如图有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,绕着中心旋转其中一个正方形,那么图中阴影部分的面积是( )
A. 无法确定B. 8cm2C. 16cm2D. 4cm2
【答案】D
【解析】
如图,根据正方形的性质得OD=OC,∠ODA=∠OCD=45°,∠DOC=90°,再利用等角的余角相等得到∠DOE=∠COF,于是可根据“ASA”证明△ODE≌△OCF,
则S△ODE=S△OCF,所以S四边形EOFD=S△DOC=S正方形ABCD.
解:如图,
∵四边形ABCD为正方形,
∴OD=OC,∠ODA=∠OCD=45°,∠DOC=90°,
而∠POM=90°,
即∠DOF+∠COF=90°,∠DOE+∠DOF=90°,
∴∠DOE=∠COF,
在△ODE和△OCF中,
,
∴△ODE≌△OCF(ASA),
∴S△ODE=S△OCF,
∴S四边形EOFD=S△DOC=S正方形ABCD=×42=4(cm2).
故选:D.
练习册系列答案
相关题目