题目内容
如图,双曲线
【答案】分析:设A(m,n)则B(-m,-n),过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,根据平行线分线段成比例定理得出
=
,
=
,求出p=1+
,q=
-1,代入p-q求出即可.
解答:解:∵双曲线
与直线y=mx相交于A、B两点,
∴设A(m,n)则B(-m,-n),
过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,
则BG=AN=m,
∴MH∥AN∥BG,
∴
=
,
∴p=
=
=1+
=1+
,
∵
=
,
∴
=
,
即1+
=
,
∴q=
=
-1,
∵BG=AN,
∴p-q=(1+
)-(
-1)=2.
故答案为:2.
点评:本题考查了平行线分线段成比例定理和一次函数与反比例函数的应用,关键是根据平行线分线段成比例定理得出比例式,题目比较好,但有一定的难度.
解答:解:∵双曲线
∴设A(m,n)则B(-m,-n),
过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,
则BG=AN=m,
∴MH∥AN∥BG,
∴
∴p=
∵
∴
即1+
∴q=
∵BG=AN,
∴p-q=(1+
故答案为:2.
点评:本题考查了平行线分线段成比例定理和一次函数与反比例函数的应用,关键是根据平行线分线段成比例定理得出比例式,题目比较好,但有一定的难度.
练习册系列答案
相关题目