题目内容

【题目】如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.

【答案】
(1)解:∠CMQ=60°不变.

∵等边三角形中,AB=AC,∠B=∠CAP=60°

又由条件得AP=BQ,

∴△ABQ≌△CAP(SAS),

∴∠BAQ=∠ACP,

∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°


(2)解:设时间为t,则AP=BQ=t,PB=4﹣t

①当∠PQB=90°时,

∵∠B=60°,

∴PB=2BQ,得4﹣t=2t,t=

②当∠BPQ=90°时,

∵∠B=60°,

∴BQ=2BP,得t=2(4﹣t),t=

∴当第 秒或第 秒时,△PBQ为直角三角形


(3)解:∠CMQ=120°不变.

∵在等边三角形中,BC=AC,∠B=∠CAP=60°

∴∠PBC=∠ACQ=120°,

又由条件得BP=CQ,

∴△PBC≌△QCA(SAS)

∴∠BPC=∠MQC

又∵∠PCB=∠MCQ,

∴∠CMQ=∠PBC=180°﹣60°=120°


【解析】(1)因为点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得CQM的度数.(2)设时间为t,则AP=BQ=t,PB=4﹣t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.(3)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.
【考点精析】本题主要考查了等边三角形的性质的相关知识点,需要掌握等边三角形的三个角都相等并且每个角都是60°才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网