题目内容
【题目】已知,在河的两岸有A,B两个村庄,河宽为4千米,A、B两村庄的直线距离AB=10千米,A、B两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥MN垂直于两岸,M点为靠近A村庄的河岸上一点,则AM+BN的最小值为( )
A.2B.1+3C.3+D.
【答案】A
【解析】
作BB'垂直于河岸,使BB′等于河宽,连接AB′,与靠近A的河岸相交于M,作MN垂直于另一条河岸,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故MB′=BN;根据“两点之间线段最短”,AB′最短,即AM+BN最短,此时AM+BN=AB′.
解:如图,作BB'垂直于河岸,使BB′等于河宽,连接AB′,与靠近A的河岸相交于M,作MN垂直于另一条河岸,
则MN∥BB′且MN=BB′,
于是MNBB′为平行四边形,故MB′=BN.
根据“两点之间线段最短”,AB′最短,即AM+BN最短.
∵AB=10千米,BC=1+3+4=8千米,
∴在RT△ABC中,,
在RT△AB′C中,B′C=1+3=4千米,
∴AB′=千米;
故选A.
练习册系列答案
相关题目