题目内容
【题目】在平面直角坐标系中,点P的坐标为(0,﹣5),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于y轴,且AB=8,反比例函数(k≠0)经过点B,则k=______.
【答案】﹣8或﹣32.
【解析】解:设线段AB交y轴于点C,当点C在点P的上方时,连接PB,如图,∵⊙P与x轴相切,且P(0,﹣5),∴PB=PO=5,∵AB=8,∴BC=4,在Rt△PBC中,由勾股定理可得PC= =3,∴OC=OP﹣PC=5﹣3=2,∴B点坐标为(4,﹣2),∵反比例函数(k≠0)经过点B,∴k=4×(﹣2)=﹣8;
当点C在点P下方时,同理可求得PC=3,则OC=OP+PC=8,∴B(4,﹣8),∴k=4×(﹣8)=﹣32;
综上可知k的值为﹣8或﹣32,故答案为:﹣8或﹣32.
练习册系列答案
相关题目