题目内容
【题目】如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别是4、5、8,则四边形DHOG的面积是________.
【答案】7
【解析】解:连接OC,OB,OA,OD.∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE.∵S四边形AEOH=4,S四边形BFOE=5,S四边形CGOF=8,∴4+8=5+S四边形DHOG,解得:S四边形DHOG=7.故答案为:7.
练习册系列答案
相关题目
【题目】某服装厂计划生产A,B两款校服共500件,这两款校服的成本、售价如表所示:
价格 类别 | 成本(元/件) | 售价(元/件) |
A款 | 30 | 45 |
B款 | 50 | 70 |
(1)求校服厂家销售完这批校服时所获得的利润y(元)与A款校服的生产数量x(件)之间的函数关系.
(2)若厂家计划B款校服的生产数量不超过A款校服的生产数量的4倍,应怎样安排生产才能使校服厂家在销售完这批校服时获得利润最多?此时获得利润为多少元?