题目内容
【题目】问题探究:如图1,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①BE、CF与EF之间的关系为:BE+CF EF;(填“>”、“=”或“<”)
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.
问题解决:如图2,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=130°,以D为顶点作∠EDF=65°,∠EDF的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.
【答案】(1)>;(2)EF2=BE2+CF2.理由见解析;(3)EF=BE+CF.理由见解析.
【解析】
(1)如图1中,延长ED到H,使得DH=DE,连接CH,FH.证明△BDE≌△CDH(SAS),推出BE=CH,利用三角形的三边关系即可解决问题.
(2)结论:EF2=BE2+CF2.如图2中,延长ED到H,使得DH=DE,连接CH,FH.利用全等三角形的性质以及勾股定理即可解决问题.
(3)结论:EF=BE+CF.利用旋转法构造全等三角形即可解决问题.
解:(1)如图1中,延长ED到H,使得DH=DE,连接CH,FH.
∵BD=CD,∠BDE=∠CDH,DE=DH,
∴△BDE≌△CDH(SAS),
∴BE=CH,
∵DE=DH,FD⊥EH,
∴FE=FH,
在△FCH中,∵CH+CF>FH,
∴BE+CF>EF.
故答案为>.
(2)结论:EF2=BE2+CF2.
理由:如图2中,延长ED到H,使得DH=DE,连接CH,FH.
∵BD=CD,∠BDE=∠CDH,DE=DH,
∴△BDE≌△CDH(SAS),
∴BE=CH,∠B=∠DCH,
∵DE=DH,FD⊥EH,
∴FE=FH,
∵∠A=90°,
∴∠B+∠ACB=90°,
∴∠ACB+∠DCH=90°,
∴∠FCH=90°,
∴FH2=CH2+CF2,
∴EF2=BE2+CF2.
(3)如图3中,结论:EF=BE+CF.
理由:∵DB=DC,∠B+∠ACD=180°,
∴可以将△DBE绕点D顺时针旋转得到△DCH,A,C,H共线.
∵∠BDC=130°,∠EDF=65°,
∴∠CDH+∠CDF=∠BDE+∠CDF=65°,
∴∠FDE=∠FDH,
∵DF=DF,DE=DH,
∴△FDE≌△FDH(SAS),
∴EF=FH,
∵FH=CF+CH=CF+BE,
∴EF=BE+CF.
【题目】重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:,,)