题目内容
【题目】已知∠MAN=120°,AC平分∠MAN.
(1)在图1中,若∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.
(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.
解:(1)在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°
∴AC=2AD,AC=2AB,
∴2AD=2AB
∴AD=AB
∴AD+AB=AC.
(2)(1)中的结论AD+AB=AC成立,
理由如下:如图2,在AN上截取AE=AC,连接CE,
∵∠CAE=60°,
∴△ACE是等边三角形,
∴∠DAC=∠CEB=60°,
∵∠ADC+∠ABC=180°,∠ABC+∠EBC=180°,
∴∠ADC=∠EBC,
∵在△ADC和△EBC中,
,
∴△ADC≌△EBC
∴DA=BE
∵△CAE为等边三角形,
∴AC=AE,
∴AD+AB=AB+BE=AE=AC,
∴AD+AB=AC.
【题目】小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:
(1)函数y=自变量的取值范围是 ;
(2)下表列出了y与x的几组对应值:
x | … | ﹣2 | ﹣ | m | ﹣ | ﹣ | 1 | 2 | … | |||
y | … | 1 | 4 | 4 | 1 | … |
表中m的值是 ;
(3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;
(4)结合函数y=的图象,写出这个函数的性质: .(只需写一个)