题目内容
一个多边形的外角和等于它的内角和的倍,这个多边形是( )
A. 三角形 B. 四边形 C. 五边形 D. 六边形
A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,则点B所表示的数为______.
如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数的图象经过点A,则k的值是( )
A. ﹣2 B. ﹣4 C. ﹣ D.
计算:
如图,已知,,BE与CF交于点D,则对于下列结论:≌;≌;≌;在的平分线上其中正确的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
下列四个标志中,是轴对称图形的是( )
A. B. C. D.
先阅读材料,再回答问题:分解因式:(a-b)2-2(a-b)+1.
【解析】将“a-b”看成整体,令a-b=M,则原式=M2-2M+1=(M-1)2,再将a-b=M还原,得到:原式=(a-b-1)2.上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:
(1)分解因式:9+6(x+y)+(x+y)2=____________________.
(2)分解因式:x2-2xy+y2-1=____________________.
(3)若n为正整数,则(n+1)(n+4)(n2+5n)+4的值为某一个整数的平方,试说明理由.
如图,在菱形ABCD中,F为对角线BD上一点,点E为AB延长线上一点,DF=BE,CE=CF.求证:
(1)△CFD≌△CEB;
(2)∠CFE=60°.
如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据:≈1.4,≈1.7).