ÌâÄ¿ÄÚÈÝ
ÔĶÁ²ÄÁÏ£º°ÑÐÎÈçax2+bx+cµÄ¶þ´ÎÈýÏîʽ£¨»òÆäÒ»²¿·Ö£©Åä³ÉÍêȫƽ·½Ê½µÄ·½·¨½Ð×öÅä·½·¨£®Åä·½·¨µÄ»ù±¾ÐÎʽÊÇÍêȫƽ·½¹«Ê½µÄÄæд£¬¼´a2¡À2ab+b2=£¨a¡Àb£©2£®ÀýÈ磺£¨x-1£©2+3¡¢£¨x-2£©2+2x¡¢£¨
1 |
2 |
3 |
4 |
Çë¸ù¾ÝÔĶÁ²ÄÁϽâ¾öÏÂÁÐÎÊÌ⣺
£¨1£©±ÈÕÕÉÏÃæµÄÀý×Ó£¬Ð´³öx2-4x+2ÈýÖÖ²»Í¬ÐÎʽµÄÅä·½£»
£¨2£©½«a2+ab+b2Åä·½£¨ÖÁÉÙÁ½ÖÖÐÎʽ£©£»
£¨3£©ÒÑÖªa2+b2+c2-ab-3b-2c+4=0£¬Çóa+b+cµÄÖµ£®
·ÖÎö£º£¨1£©£¨2£©±¾Ì⿼²é¶ÔÍêȫƽ·½¹«Ê½µÄÁé»îÓ¦ÓÃÄÜÁ¦£¬ÓÉÌâÖÐËù¸øµÄÒÑÖª²ÄÁϿɵÃx2-4x+2ºÍa2+ab+b2µÄÅä·½Ò²¿É·Ö±ð³£ÊýÏî¡¢Ò»´ÎÏî¡¢¶þ´ÎÏîÈýÖÖ²»Í¬ÐÎʽ£»
£¨3£©Í¨¹ýÅä·½ºó£¬ÇóµÃa£¬b£¬cµÄÖµ£¬ÔÙ´úÈë´úÊýʽÇóÖµ£®
£¨3£©Í¨¹ýÅä·½ºó£¬ÇóµÃa£¬b£¬cµÄÖµ£¬ÔÙ´úÈë´úÊýʽÇóÖµ£®
½â´ð£º½â£º£¨1£©x2-4x+2µÄÈýÖÖÅä·½·Ö±ðΪ£º
x2-4x+2=£¨x-2£©2-2£¬
x2-4x+2=£¨x+
£©2-£¨2
+4£©x£¬
x2-4x+2=£¨
x-
£©2-x2£»
£¨2£©a2+ab+b2=£¨a+b£©2-ab£¬
a2+ab+b2=£¨a+
b£©2+
b2£»
£¨3£©a2+b2+c2-ab-3b-2c+4£¬
=£¨a2-ab+
b2£©+£¨
b2-3b+3£©+£¨c2-2c+1£©£¬
=£¨a2-ab+
b2£©+
£¨b2-4b+4£©+£¨c2-2c+1£©£¬
=£¨a-
b£©2+
£¨b-2£©2+£¨c-1£©2=0£¬
´Ó¶øÓÐa-
b=0£¬b-2=0£¬c-1=0£¬
¼´a=1£¬b=2£¬c=1£¬
¡àa+b+c=4£®
x2-4x+2=£¨x-2£©2-2£¬
x2-4x+2=£¨x+
2 |
2 |
x2-4x+2=£¨
2 |
2 |
£¨2£©a2+ab+b2=£¨a+b£©2-ab£¬
a2+ab+b2=£¨a+
1 |
2 |
3 |
4 |
£¨3£©a2+b2+c2-ab-3b-2c+4£¬
=£¨a2-ab+
1 |
4 |
3 |
4 |
=£¨a2-ab+
1 |
4 |
3 |
4 |
=£¨a-
1 |
2 |
3 |
4 |
´Ó¶øÓÐa-
1 |
2 |
¼´a=1£¬b=2£¬c=1£¬
¡àa+b+c=4£®
µãÆÀ£º±¾Ì⿼²éÁ˸ù¾ÝÍêȫƽ·½¹«Ê½£ºa2¡À2ab+b2=£¨a¡Àb£©2½øÐÐÅä·½µÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿