题目内容
【题目】在Rt△ABC中,AB=6,BC=8,则这个三角形的内切圆的半径是( )
A.5B.2C.5或2D.2或-1
【答案】D
【解析】
分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.
第一情况:当AC为斜边时,
如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,
∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,
在Rt△ABC中,AB=6,BC=8,由勾股定理得,
,
∵ ,
∴ ,
∴ ,
∴r=2.
第二情况:当BC为斜边时,
如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,
∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,
在Rt△ABC中,AB=6,BC=8,由勾股定理得,
,
∵ ,
∴ ,
∴ ,
∴r= .
故选:D.
练习册系列答案
相关题目