题目内容
已知x3+y3=27,x2y﹣xy2=6,求(y3﹣x3)+(x2y﹣3xy2)﹣2(y3﹣x2y)的值.
解:(y3﹣x3)+(x2y﹣3xy2)﹣2(y3﹣x2y)
=y3﹣x3+x2y﹣3xy2﹣2y3+2x2y
=﹣x3﹣y3+3x2y﹣3xy2.
因为x3+y3=27,所以﹣(x3+y3)=﹣27,即﹣x3﹣y3=﹣27,
因为x2y﹣xy2=6,
所以3(x2y﹣xy2)=18,即3x2y﹣3xy2=18,
所以原式=﹣x3﹣y3+3x2y﹣3xy2=﹣27+18=﹣9.
∴(y3﹣x3)+(x2y﹣3xy2)﹣2(y3﹣x2y)的值为﹣9.
=y3﹣x3+x2y﹣3xy2﹣2y3+2x2y
=﹣x3﹣y3+3x2y﹣3xy2.
因为x3+y3=27,所以﹣(x3+y3)=﹣27,即﹣x3﹣y3=﹣27,
因为x2y﹣xy2=6,
所以3(x2y﹣xy2)=18,即3x2y﹣3xy2=18,
所以原式=﹣x3﹣y3+3x2y﹣3xy2=﹣27+18=﹣9.
∴(y3﹣x3)+(x2y﹣3xy2)﹣2(y3﹣x2y)的值为﹣9.
练习册系列答案
相关题目